
1

CODE VALLEY – A PEER-TO-PEER SOFTWARE ENGINEERING SYSTEM

Noel Lovisa
Julie Lovisa

Introduction
“There  are  no  inventions  that  will  do  for  software
productivity, reliability, and simplicity what electronics,
transistors, and large-scale integration did for computer
hardware.” 

(Brooks Jr. 1987)

For nearly half a century, the software industry has been in a
perennial  state  of crisis.  In  fact,  is  an ‘industry’ so woefully
plagued by late, over-budget, inefficient,  low-quality products
even  worthy  of  the  term?  In  1968,  a  NATO-sponsored
conference was called to chart a way out of the crisis. While
little changed as a result, the term ‘Software Engineering’ was
coined for the disciplined approach it represented and as a tacit
recognition of  the  legitimate  engineering  disciplines  that  had
left  software  so  far  behind.  While  many attempts  have  been
made  to  realise  this  aspiration,  and  some  improvements  to
lessen the sting of the software crisis have transpired, the fact
remains  that  these  methods  are  reactionary  rather  than
preventative,  and have addressed the accidental difficulties of
software  rather  than  the  essential.  As  long  as  the  essence  of
software  remains  insurmountably  complex,  ‘Software
Engineering’ will forever remain a term of aspiration.

“The software industry is not industrialised.” 
(McIlroy 1968)

Like  Ford and  Whitney  before  him,  McIlroy  recognised  that
mass-production  was  the  key  to  industrialisation.  History
reveals  that  mass-production  is  built  upon  principles  of
standardisation, interchangeability and reductionism.  Whilst  it
is  true  that  ‘standardisation’,  through the  advent  of  software
libraries,  modularity  and  object-oriented  programming,  has
permitted some degree of interchangeability, a mass-produced
software components industry has yet to emerge.

“The real  price we pay  is  that  as  a specialist  in  any
software  technology  you  cannot  capture  your  special
capability in a product.” 

David A. Fisher (in Gibbs 1994)

Inherent in the concept of reductionism is specialisation – an
industry specialist is one who is an expert at constructing their
respective  interchangeable  part.  At  present,  the  commercial
viability of a specialist is undermined by the very essence of
software.  Ironically, whilst  it  is  very  easy  to  specialise,  it  is
virtually  impossible  to  build  a  viable  business  as  a  software
specialist.  Thus,  with  no  commercial  incentive  to  become  a

specialist,  software developers  are  forced  to  languish as  pre-
industrial generalists, left in the dust by their hardware engineer
counterparts. Sadly, a software industry composed of generalists
can never enjoy its own industrial revolution – the crisis will
persist.

In this paper, we offer a new approach to software development,
which  permits  the  capture  of  Fisher’s  special  capability  in  a
product,  thus  reinstating  specialisation  for  McIlroy’s
industrialisation of software, and thus clearing a path for Brooks
Jr.’s order-of-magnitude improvements in software productivity,
reliability and simplicity.

Industrialisation
The Industrial Revolution is considered a revolution for good
reason.  The  shift  from  pre-industrial  methods  to  machines
heralded such improvements in productivity, quality and costs
that  today,  economic  historians  agree  that  the  onset  of  the
Industrial Revolution is the most important event in the history
of  humanity  since  the  domestication  of  plants  and  animals
(McCloskey 2004). 

McIlroy  was  wise  to  pursue  industrialisation  for  the  turning
point it offered the software industry. However, this pursuit of
industrialisation was never fully realised, and McIlroy’s 1968
observation  that  the  software  industry  was  not  industrialised
remains  valid  decades  later.  Current  methods  of  software
development, while more sophisticated in their arrangement and
deployment, differ little from those of the late 60s. Clearly, a
formidable barrier to industrialisation exists.

In  a  truly  industrialised  software  system,  software  would  be
developed  using  a  supply-chain,  where  supply  and  demand,
coupled  with  competition  and  innovation,  drive  production.
Typically,  a  client  would  contract  a  specialist  supplier  and
provide software requirements. The supplier would then design
and deliver software satisfying those requirements in return for
suitable remuneration. However, unbeknownst to the client, the
product  delivered  by  the  supplier  would  actually  be  an
assemblage  of  other  products  provided  by  sub-contracted
suppliers  and  so  on.  Such  supply-chains  are  spectacularly
successful  in  other  industries,  where  the  application  of
reductionism, interchangeability and standardisation, has led to
specialisation, automation and intense competition. As a result,
costs  have been driven down while quality, performance and
speed have been driven up in a continuous cycle that rewards
innovation.

Abstract: By enduring the software crisis for so long, we have become numb to (and accepting of) its effects. Large projects fare
the worst with crippling losses and blown schedules occurring more often than not. To date, the very essence of software – its
complexity –  has proven all but impossible to manage. In direct contrast, other legitimate  industries routinely manage their
complexities. Coincidentally, in 1968 McIlroy observed that the “software industry is not industrialised” and the intervening
decades  have  only served  to  reinforce this  observation.  Ironically, whilst  it  is  easy  to  specialise in  software,  it  is  virtually
impossible to build a viable business as a specialist, thus robbing industrialisation of its most vital basis – specialisation. We
propose to shift developers from the ‘code-domain’ to a peer-to-peer network operating in a ‘design-domain’, where engineers
now co-operate to make design-contributions. This shift offers a viable medium for capturing their special capability in a product,
thus  preserving  prospects  for  repeat  business,  and  ultimately  reinstating  specialisation.  With  its  most  vital  basis  restored,
McIlroy’s long-awaited industrialisation of software can begin.



2

Intellectual property exposure
The barrier to industrialisation is an inability to specialise, or as
Fisher puts it, “you cannot capture your special capability in a
product” (Gibbs 1994). We contend that the problem is not so
much  that  you  cannot  capture  your  special  capability  in  a
product, but  that  you leak it  when you make a sale.  When a
software  specialist’s  intellectual  property  predominantly  lies
within the code of a software component, the specialist, out of
necessity, exposes  their  intellectual  property upon component
delivery. By harming prospects for repeat business, the business
model is compromised, along with any opportunity for viable
monetisation.

The source of this intellectual property leakage can be traced to
three  main  facets  of  component  delivery  –  integration,
portability  and re-usability.  Under  the  incumbent  software
development  doctrine,  simplifying  integration  and  making
components re-usable and portable are worthy objectives when
striving for improved productivity and lower costs.  However,
any  support  provided  by  the  supplier  to  assist  with  a
component’s integration can be viewed as exposing intellectual
property  rightly  belonging  to  the  supplier  –  an  unavoidable
consequence when it is the client’s responsibility to integrate the
components. 

The inclusion of additional functionality to determine some of
the  run-time  context  permits  a  more  context-independent
component  with  a  simpler  interface,  making  the  component
easier  to  use.  However,  this  functionality  casts  some  of  the
supplier’s  intellectual  property  into  the  component,  leaking
intellectual  property  rightly  belonging  to  the  supplier  –  an
unavoidable  consequence  when  seeking  portability.  Lastly,
making a component interchangeable fosters competition, as it
permits  more  than  one  supplier  of  a  particular  component.
Unfortunately, it also requires publishing and standardising the
component  interface,  thereby  exposing  intellectual  property
rightly belonging to the supplier – an unavoidable consequence
when encouraging re-usability.

If a software development process can be determined in which
the client  integrates the component without knowledge of the
component interface or assistance from the supplier, whilst also
ensuring the component is interchangeable but not economically
portable or re-usable,  then we will have a solution for viable
specialisation and the race to industrialise can begin. 

Intellectual property protection
It appears that protecting the supplier’s intellectual property is a
formidable challenge.  On the one hand, components should be
interchangeable and easy for a client to integrate. On the other,
it is necessary to withhold interface information and assistance
from the client and even stymie portability and re-usability in
the interests of preserving supplier economic viability. To break
this impasse, something essential has to change.

Simplifying integration
Component  integration  requires  a  good understanding  of  the
component  interfaces,  combined  with  sophisticated
programming  skills  to  develop  the  glue  logic  necessary  to
complete the design.

We propose  to  simplify  component  integration  to  its
irreducible minimum – concatenation.

We recognise  that  if  the  client  is  required  to  do  more  than

concatenate in order to integrate their purchased components,
then there is leakage of intellectual property.

Reducing portability
While reducing component portability will make the component
harder to use, it also reduces any associated intellectual property
leakage as less component code is required to determine its run-
time context.

We propose  to  make  each  component  the  opposite  of
portable – context-dependent.

We  propose  the  run-time  context  be  provided  to  the
supplier at design-time so that each component may be
designed for its intended run-time context, strengthening
its context-dependency.

We further  propose  to  eliminate  component  interfaces
altogether by allowing suppliers to  co-operate  on their
design,  thus  rendering  the  component  completely
context-dependent.

While these proposals appear to make a component design more
difficult,  they  do  provide  the  substantial  simplification  of
component  integration necessary in  order  to  halt  exposure of
intellectual property.

Reducing re-usability
While  component  re-usability  should  be  limited  in  order  to
reduce intellectual property leakage, it should not impede in any
way  the  interchangeability  of  the  components,  as  many
suppliers competing for a specific component business is vital
for industry progression.

We propose  to  harness  strong  context-dependency  to
render  uneconomical  any prospects  for  component  re-
use.

And finally, we propose to eliminate the glue logic and
even  the  concept  of  a  component  altogether  by
synthesising components on-the-fly. 

Thus,  we  propose  to  replace  the  context-independent
component with a context-dependent fragment.

Integration via concatenation can only be supported by on-the-
fly synthesis of fragments sourced from co-operating suppliers.
This co-operation results in strong  context-dependency, which
is harnessed to stymie reuse, as shown in Figure 1. 

With  these  changes  to  integration,  portability  and  re-use,  the
supplier effectively builds the fragment into the client’s project,
thereby  satisfying  the  objective  of  ‘component  delivery.’  In
effect,  the client  receives the benefit  of the fragment without
any burden of integration and the supplier effectively delivers
the fragment without the risk of proprietary intellectual property
leakage. 

Finally, with the removal of the component’s additional context
code  and  interface,  their  associated  run-time  performance
penalty is also recovered.

Design-domain
These fundamental  changes to  integration,  portability  and re-
usability require an equally fundamental change to the process
of software development.

We propose  to  shift  the  developer from the incumbent
code-domain  to  a  ‘design-domain’,  by  decoupling  the
design process from code production.



3

In doing so, the intellectual property of the software developer
is essentially removed from the code. This shift to the design-
domain effectively reverses responsibilities that form part of the
incumbent relationship between client and supplier.

Reversing design responsibility
In  the  code-domain,  component  integration  and  glue  logic
design  are  the  responsibility  of  the  client,  a  situation  that  is
reversed  in the design-domain. This reversal effectively shifts
the burden of integration to the supplier, reducing the client’s
task to one of simple fragment concatenation. To facilitate this,
the supplier must be granted access to a small portion of the
client’s project. 

Instead of a supplier delivering a fragment to the client,
we  propose  the  client  delivers  a  metaphorical
construction-site  to  the  supplier,  in  keeping  with  the
reversal of design responsibility.

Now, the rigid code-domain component gives way to a flexible
fragment  that  is  synthesised  on-the-fly  for  the  client,  and
custom-designed  according  to  the  client’s  requirements.
Through  fragment  synthesis,  the  client  is  now afforded  an
opportunity to tailor the fragments, thus incorporating some of
what would have been glue logic, while directing suppliers to
co-operate  to  determine  their  mutual  interfaces  incorporates
even more.  Thus,  the role of  the client  is  merely to  provide
requirements  and  coordinate  suppliers  in  order  to  arrive  at  a
workable design.

Reversing legal responsibility
The contract typically drawn up between a client and incumbent
software developer ensures that the software product belongs to
the  client.  Surprisingly,  “if  the  software  developer  re-uses  a
component  of  one  client’s product  in  a  new  product  for  a
different client, this essentially constitutes a violation of the first

client’s  copyright”  (Schach  2008).  It  appears  the  legal
underpinnings  of  code-domain  software  development  also
undermine  the  commercial  viability  of  a  supplier,  who  is
obligated by law to relinquish intellectual property rights to the
client. By decoupling the design from the code, the expression
of  work  (the  code)  is  irrevocably  separated  from  the  ideas
underlying  the  work  (the  design).  In  so  doing,  the  supplier
retains  proprietorship  over  the  design  process  while  still
delivering a code fragment. 

Instead of protecting the legal rights of the client at the
expense  of  the  supplier, both  client  and  supplier  are
equally protected.

Thus,  the debate  over  ownership is  now moot,  and  no  legal
encumbrances or good-will on the part of the client are needed,
as the supplier simply does not deliver their intellectual property
to the client with the product.

Reversing requirements responsibility
“The hardest single part of building a software system is
deciding precisely what to build [...] For the truth is, the
clients do not know what they want.” 

       Brooks Jr. (1987)

In the code-domain, a software project typically begins with the
establishment  of  a  Software  Requirements  Specification,  a
document  that  requires  input  from  both  client  and  supplier.
During this phase of the project, the supplier is responsible for
gleaning the necessary information from the client (who often
has only a vague idea of what they desire). This can lead to gaps
in  communication,  which,  coupled  with revised  requirements
and  changes  requested  during  the  course  of  the  project,  can
cause subsequent delays and development errors.

Instead  of  the  client  delivering  requirements  to  the
supplier, we  propose  the  supplier  delivers  degrees-of-
freedom to  the  client,  in  keeping  with  the  reversal  of
design responsibility.

Industrialised  software engineering reverses  the responsibility
for requirements specification so that now the supplier presents
the client with an array of feasible and clearly defined degrees-
of-freedom  from  which  the  client  must express  their
requirements.

This  process  is  already  standard  practice  in  other  legitimate
industries, where components not supported by the industry are
simply not available.  Experienced designers are familiar with
the  degrees-of-freedom offered  by  the  suppliers  and  will  not
produce  a  design  for  which  parts  are  not  supported,  often
upgrading to a higher specification or over-designing so as to
arrive at a constructable design.

The  shift  to  the  design-domain  successfully  removes  legal
encumbrances, demarcates design responsibilities and clarifies
the  expression  of  requirements.  Most  importantly,  this  shift
guarantees intellectual property protection, thereby restoring the
most vital basis of industrialisation – specialisation.

Peer-to-peer software engineering system
By  harnessing  the  industrial  mechanism  of  mass-production
through  standardisation,  interchangeability  and  reductionism,
the  ad-hoc  generalist  approach  to  software  development  can
give way to the disciplined system sought in 1968 – Software
Engineering.  The  opportunity  to  comprehensively  overhaul
software development uniquely positions this emerging industry

Figure 1 – (a) fragments provided by vendors, and 
(b) attempted code reuse with incompatible fragments



4

to  engineer  its  own  revolution  by  cherry-picking  proven
methods from legitimate industries which have had the time to
refine  and  mature.  Further,  since  this  emerging  software
industry is unbound by any physical laws or constraints, it can
undergo  its  industrial  revolution  on  a  global  scale  and  in
Internet-time, rather than on a national scale and over decades
or centuries.

At the core of this emerging software industry is a supply-chain
comprising  an  elaborate  peer-to-peer  network  of  software
engineers, arranged into a layered hierarchy. In keeping with the
shift to the design-domain, a software engineer is expected to
provide a design-contribution – code is no longer their specific
responsibility.  Instead,  engineers  from  each  layer  of  the
hierarchy contribute to  the overall  design until  an executable
coalesces as if by magic from their combined efforts.

An  industrialised  system  will  require  many  such  design-
contributors, known as  vendors, each a specialist in their own
right. When contracting a vendor, the client is presented with
the vendor’s degrees-of-freedom, each requirement of which the
client is obligated to satisfy in order for the vendor to render
their  design-contribution.  Once  all  requirements  have  been
acquired, the vendor is in a position to sub-contract suppliers
according  to  the  combination  of  these  requirements  and  the
vendor’s  own proprietary  knowledge.  (The  vendor’s
organisation of suppliers plays a key role in the delivery of the
final executable.) 

This  process  recursively descends,  with each successive  sub-
contractor contributing a new level of detail to the design whilst
stripping away a layer of complexity until the design reaches
foundation vendors who cap the recursion. In this way, design-
contributions can be globally complex yet locally manageable,
since each vendor can rely on inheriting  complexity from their
suppliers.

This  process  should  not  be  confused  with  top-down  design
which is managed in the code-domain on a macro level with the
large-scale  overview  in  mind  (an  approach  that  favours  the
generalist). In this industrialised system, reductionism ensures
the design framework is rendered on a micro level by specialist
vendors, who are concerned only with completing the task for
which they have been contracted and do not require (nor desire)
any information about the overall software design. In fact, since
the  selection  and  sequencing  of  sub-contractors  actually
embodies the intellectual property of the specialist, any attempt
to map the entire design framework would require  knowledge
of each vendor’s intellectual property. Thus, the success of this
design  paradigm  is  reliant  upon  each  vendor  being  able  to
deliver  their  design-contribution  without  any  need  for  global
contextualisation.

Of  course,  the  question  remains;  if  software  engineers  now
operate entirely in the design-domain, how does the final code
executable materialise?

By  shifting  industry  focus  to  the  design-domain,  a  software
engineer  is  relieved  of  the  responsibility  of  translating the
design into code, arguably one of the most difficult issues faced
by  code-domain  software  developers.  In  fact,  as  the  design
increases  in  complexity,  code-domain  methods  see  the
difficulties  in  translating  design  into  code  increase
exponentially, imposing limits on the scale of software that can
be reliably delivered. 

In  the  design-domain,  complexities  are  methodically  stripped
away  until  the  translation  into  code  becomes  as  simple  as
placing bytes into a native binary executable.

The binary executable coalesces in a design construct called a
scaffold,  using  an  in-built  and  entirely  automated  protocol
known  as  construction-site.  As  the  design  proceeds  from
principal client to the foundation vendors, an elaborate network
of  ordered  connections  between  vendors  is  strategically
established  as  part  of  their  design-contributions.  These
connections,  in  their  entirety,  form  a  global  design  scaffold
which is rendered at  a  local  level  and remains unseen at  the
global level.

With each layer, the overall context of the design becomes more
dispersed so that the context provided to each individual vendor
becomes  proportionally  simpler.  This  contextual  dispersion
continues  with  each  extension  to  the  scaffold  until  the  last
vestiges of context have been removed. At this point, no further
extension  is  necessary,  as  foundation  vendors,  using  the
construction-site  protocol,  simply  place  bytes into  what  will
eventually become the resulting binary executable. In fact, once
a vendor has completed their design-contribution, they may be
remunerated,  with  the  system  completing  the  fragment
integration and delivery at a later stage on their behalf.

The construction-site protocol consists of three stages; 
1. request for space (code/data),
2. address assignation (code/data), and
3. delivery (code/data) as shown in Figure 2.

Once  the  design  has  reached  foundation  vendors  and  the
scaffolding  is  complete,  a  request  for  space  is  automatically
returned  to  the  preceding  scaffold  intersections  where  these
requests for space are amalgamated and returned to the previous
scaffold intersections and so on up the scaffold. 

Once  the  final  amalgamated  request  for  space  reaches  the
pinnacle of  the  scaffold,  the start  address  for  the subsequent
amalgamated requests for space can be computed (according to
each  client’s  careful  and  strategic  ordering  of  its  scaffold
connections).  These  addresses  are  then  passed  down  the
scaffold,  and  new  addresses  are  automatically  computed  in
similar fashion at each scaffold intersection. 

When  the  propagated  addresses  reach  the  foundation  layer,
foundation vendors can complete their design-contribution, and
fill  their  requested  spaces  with  bytes,  forming  the  smallest
fragments. At each intersection, guided by the vendors’ ordered
connections,  these  fragments  are  concatenated  and/or  passed
upwards to form larger fragments until the largest fragment –
the final binary executable – reaches the principal client. Each
intersection’s  amalgamation  of  requests,  computing  of
addresses  and  concatenation  of  fragments,  serve  to  protect
vendors  from exposing  the  number  and  arrangement  of  their
contractors.

Metaphorically speaking, the construction-site protocol can be
viewed  as  a  physical  construct  in  which  the  final  binary
executable  is  erected,  where  the  scaffolding  acts  as  its
temporary structural support. At the initialisation of a software
project,  the  principal  client  is  in  possession  of  an  ‘empty’
construction-site.  After  sub-contracting  vendors  and
establishing the first series of scaffold connections, the principal
client divides and distributes the figurative construction-site to
each of these vendors along scaffold supports.



5

This process is known as partitioning and occurs in fractal-like
fashion until the partitioned construction-site is scattered across
numerous foundation vendors, ready for placement of code/data
bytes. Once filled with bytes, these construction-site partitions
are  aggregated  using  simple  concatenation  at  scaffold
intersections. The scaffold then retracts and larger construction-
site  portions  are  concatenated  upwards  until  the  intact
construction-site arrives at the principal client. In this way, the
scaffold  is  effectively  dismantled  to  reveal  the  final  product,
ready for acceptance testing by the principal client.

Transition
An industrialised  system for  software  engineering  requires  a
working supply-chain.  In order for this supply-chain to expand
and improve, it must be capable of accepting new vendors. This
represents the minimum requirement for a  transition from the
code-domain  to  the  design-domain;  a  ‘prime  supply-chain’
capable of self-replication.

At  a  minimum,  a  prime  chain  of  vendors  must
encapsulate design expertise of sufficient sophistication
so as to construct vendor-software.

A  causality  dilemma  arises  –  how  can  a  prime  chain  be
constructed  in  the  absence  of  any  existing  supply-chain?
Without  an  already  established  supply-chain,  there  is  little
alternative but to develop each vendor of the prime chain using
code-domain  methods.  When  this  ‘bootstrap’ supply-chain  is
operational,  each  vendor  is  free  to  rebuild  their  software  by
engaging  the  bootstrap  supply-chain  with  their  same  vendor
requirements. 

The resulting set of vendors form a chain that is operationally
equivalent to the bootstrap supply-chain but built using design-
domain methods. Each new vendor peering with (becoming part
of) the prime chain enhances the chain’s capabilities. Existing
vendors can then rebuild their vendor-software to field the new
features offered by the enhanced chain.

Peering with the supply-chain
Code-domain developers can be considered generalists who, by
definition, operate in an horizontal market. Software engineers,
however,  can  be  viewed  as  specialists  operating  within
respective  market-verticals.  As  the  prime  chain  occupies  the
vendor-software market-vertical, it can effectively be viewed  as
a  single  ‘vendor’  whose  sole  (and  specialist) purpose is to

build vendor-software. When this prime ‘vendor’ is engaged by
a prospective software engineer, the prime ‘vendor’ will present
the prospect  with degrees-of-freedom specifically  tailored for
vendor-software requirements.  Once these degrees-of-freedom
have been  satisfied  and  the  prime  ‘vendor’ has  captured  the
requirements,  the  software  engineer  takes  possession of  their
new  vendor-software  and  can  then  commence  business  as  a
specialist in their chosen market-vertical.  In this way, the first
wave  of  software  engineers  to  enter  the  design-domain  will
engage the prime chain to  construct  their  vendor-software in
order  to  peer  with the  prime chain.  In  later  stages,  software
engineers  can  upgrade  their  vendor-software  by  simply
engaging  the  prime  chain  from  the  global  supply-chain.  As
more vendors peer with the global supply-chain, the scope and
quality of software that can be engineered is widened. Principal
engineers can now engage the expanded supply-chain to build
other  software,  much  the  same  way  a  prospective  software
engineer engages the prime chain to build vendor-software. 

A viable business
For  the  first  time,  engineers  can  expect  payment  for  every
contract their vendor wins and successfully completes, secure in
the  knowledge  that  operating  in  the  design-domain  not  only
protects their  intellectual  property but preserves  opportunities
for repeat business. It  follows then that the prime chain itself
will  expect  payment  when  engaged  to  construct  vendor-
software. Payment for engaging the global supply-chain serves
to indirectly pay each participating vendor in much the same
way that purchasing an auto-mobile will indirectly pay each part
supplier. 

Engineers are also free to price their vendor at will, assisted by
the  regular  price  discovery  mechanisms  afforded  by  a
competitive  market.  As  each  vendor  may  need  to  process
several contracts at any one time, hardware resources should be
provisioned  to  match  expected  workloads.  Naturally,  any
unfulfilled  contracts  or  equipment  failures  may  tarnish  the
reputation  of  the  vendor  and  could  result  in  loss  of  market-
share.

To  become operational,  each  vendor  must  register  with  a
directory  and  assume  an  appropriate  classification  such  that
potential  clients  may  view  and  evaluate  suppliers  from  the
advertised  selection  available.  By  maintaining  a  range  of
metrics,  the directory serves to provide information about the
reputation of vendors.

Figure 2 – Construction-site protocol



6

A vendor
A software engineer’s intellectual property is now cast in the
vendor  that  delivers  their  design-contribution,  and  as  this
intellectual property is the livelihood of the engineer, it should
be  carefully  protected.  A correctly  operating vendor will  not
leak intellectual property. 

Each degree-of-freedom that the vendor presents to the client
will either be resolved directly by the client or will require co-
operation  with  another  peer  (or  peers)  as  authorised  by  the
client. This co-operation may require a negotiation with the peer
(or  peers)  to  arrive  at  an  agreement,  thereby  resolving  the
mutual requirement.

Typically, a vendor’s design-contribution will be an assemblage
of design-contributions  from  other  suppliers.  The  vendor
selects, orders and ultimately remunerates suppliers according
to  requirements  acquired  directly  from (or  via)  the  client,  in
order  to  complete  the  contract  and  receive  their  own
remuneration. The selected suppliers will present their degrees-
of-freedom, which the vendor is obligated to fulfil, for awarded
contracts  to  be  acceptable.  The  requirements  delivered  (in
accordance  with  suppliers’  degrees-of-freedom)  are  derived
from a  combination of  the  vendor’s own degrees-of-freedom
and  internal  knowledge.  A vendor  may  choose  to  resolve  a
supplier’s  requirement  directly  or  by  placing  the  supplier  in
contact  with  one  or  more  of  its  peers  so  that  they  may  co-
operatively resolve the requirement.

As a vendor will receive access to the global construction-site
via the scaffold connection, it  is obligated to further  partition
this  access  for  distribution  amongst  suppliers.  The  order  of
connections  can  be  crucial,  as  the  vendor  may  be  indirectly
assigning the order in which the supplier’s fragments will be
concatenated  upon  delivery.  Surprisingly,  the  code  fragment
returned  through  the  vendor  could  quite  feasibly  bear  little
relation to the design-contribution for which it was contracted to
provide.

Committees 
Committees are an in-built protocol and the principal form of
communication  between  vendors  in  the  supply-chain.  The
purpose  of  a  committee  is  to  resolve  a  requirement.  Each
degree-of-freedom presented to the vendor by a supplier takes
the form of a committee representative tasked with policing that
degree-of-freedom. It is the vendor’s responsibility to appoint
all  awaiting representatives to an appropriate committee.  If  a
vendor can satisfy a degree-of-freedom directly, a simple two-
member  committee  (with  self-  and  supplier-representatives
only) is established to resolve the corresponding requirement.
Alternatively, the vendor may be presented with a degree-of-
freedom that requires negotiation with a fellow representative to
resolve the requirement. In this case, the vendor simply appoints
the supplier and their relevant peer(s) to the same committee.
When the vendor requires no representation on a committee it
has  established,  it  is  implied  that  the  vendor  will  accept  the
unseen  outcome,  thus  leaving  the  committee  to  resolve  a
requirement  in  the  best  interests  of  the  representatives.
Similarly, the vendor resolves its  own degrees-of-freedom by
presenting self-representatives to its own client.

Negotiations
The  principal  form  of  co-operation  between  representatives
within a  committee is  a  negotiation.  Negotiations may be  as
simple or as complex as determined by the respective objectives
and  capabilities  of  the  committee  representatives.  The

negotiation  can  be  viewed  as  a  distributed  constraint  solver,
while  a  degree-of-freedom  can  be  viewed  as  a  negotiating
position. Once a negotiation yields an agreement, the vendors
share the terms that attend the agreement, which may take the
form  of  additional  sub-committee  representatives  awaiting
appointment. With an agreement in place, vendors are free to
proceed  with  their  design,  safe  in  the  knowledge  that  other
representatives will abide by the agreement.

Operating in the design-domain heralds significant adjustments
for  the  prospective  software  engineer.  Fortunately,  protocols
such  as  construction-site,  committee  and  negotiation  are
automatically  built  into  vendor-software  by  the  prime  chain.
These globally powerful yet locally simple protocols are easy to
master.  Reductionism  also  narrows  the  scope  of  concern,
reinstating the usefulness of simple conceptual models such as
flow charts and the like. Further, the engineer can direct their
vendor  to  effortlessly  design  complex  code  by  contracting
emergently powerful (and eager) suppliers.

The actual construction of vendor-software is done by simply
engaging the prime chain with requirements. Upon delivery, the
vendor can be put to work in the global supply-chain, with the
engineer  immediately enjoying  the rewards  afforded  by  their
newly cast innovation.

Essence and accidents of Software Engineering 
When  examining  Software  Engineering,  Brooks  Jr.  divided
software engineering into essence – the difficulties inherent in
the nature of software – and accidents – those difficulties that
attend its  production. In  1987, Brooks Jr. observed that  most
improvements to software development continued to address the
accidental difficulties of software rather than the essential, an
observation that remains valid decades later. 

We contend that  an industrialised system captures  the
essence of software.

Essence
Any claim to a method for capturing the essence of software can
be assessed by examining its impact on the inherent properties
of complexity, conformity, changeability, and invisibility.

Complexity
Brooks Jr. makes a compelling case that “complexities are the
essence” and abstracting them away often abstracts away this
essence.

We observe that the offered method thrives on complexity
and  enjoys  powerful  mechanisms  for  acquiring  it,
utilising it, extending it and being remunerated for it.

Complexity, while remaining the essence of software systems,
can  now  be  viewed  as  an  essential  feature.  When  a  vendor
provides a design-contribution in return for remuneration, the
client enjoys a delightful ignorance of the vendor’s process. The
client  is  also  shielded  from the  complexity that  is  harnessed
during the process, including the hierarchy of suppliers unseen
behind the vendor. In effect, the client enjoys the services of a
powerful  vendor without managing the equivalent complexity
of  the  vendor’s  process.  Similarly,  the  vendor  enjoys  the
services  of  their  own  suppliers  without  managing  the
complexity  of  their  processes  and  so  on.  Remarkably,  the
vendor  inherits  all  the  functionality  and  capability  of  their
suppliers  without  inheriting  any  of  the  associated  difficulty,
demonstrating emergent complexity.



7

In a literal  sense,  a vendor can now  reliably deliver a 100%
custom-designed fragment totalling many millions of bytes in
size and many millions of function-points in capability while
still  enjoying  a  process  that  is  locally  simple  –  this  vendor
merely has powerful suppliers.

The complexity of team member communication dissolves in a
similar  way.  Indeed,  “team  members”  are  actually  only  a
necessary  feature  of  the  generalist  approach  to  software
development.  In an industrialised system, there are no “team
members”  much  the  same  way  that  all  the  suppliers  to  the
automotive  industry  are  not  considered  team  members.  The
“team members” give way to a global pool of vendors dedicated
to some aspect of software engineering rather than a particular
project, and as such are now dedicated to all software projects.
Vendors  also  co-operate  with  peer  specialists  (who  are
experienced  problem-solvers  within  their  field),  where
communication facilitates design decisions. It is clear that while
there is substantial communication involved in an industrialised
system,  all  communications  are  between  experts  in  their
respective  field  and  are  therefore  experienced  and  adept  at
communicating within that field.

According to Brooks Jr., when a code-domain software project
is scaled up, it is not merely a repetition of the same elements in
larger size. Rather, it is an increase in the number of different
elements, with complexity of the whole increasing much more
than  linearly.  When  software  is  constructed  using  an
industrialised system, large numbers of contracts are precisely
let  for  design-contributions  during  the  course  of  a  project.
Larger projects have proportionally more contracts. The project
is  never  conceptualised  at  a  global  level,  rather  each  vendor
manages  their  contribution  at  a  local  level.  With  complexity
now localised to  a  contract,  complexity can  only increase in
proportion to the number of contracts. 

We contend  that  project  complexity  increases linearly
with  number  of  contracts,  while  remaining  fixed  at  a
contract level.

Conformity
Brooks Jr. argues that much of the complexity to be mastered is
arbitrary complexity that differs from interface to interface and
that  it  “cannot  be  simplified  out”  by  any  redesign  of  the
software alone.  In this regard, (putting aside for one moment
that there are now no interfaces) we observe that in order for a
client  to  utilise  a  code-domain  component,  the  client  must
comply  with the  interface  as  dictated  by the supplier. In  the
design-domain, interfaces are now defined through co-operation
between peers, assisted with the full  might of industrialisation.
In  addition,  as  all  software  is  mass-produced  but  custom-
designed  for  each  application,  conformity  is  built  into
industrialisation.

Changeability
As  fielded  software  is  “embedded  in  a  cultural  matrix  of
applications, users, laws and machine vehicles” it is constantly
subject  to  pressures  for  change.  Manufactured  things  are
infrequently  changed  after  manufacture,  certainly  much  less
frequently than modifications to fielded software. Code-domain
software is accessible and can be changed more readily than in
the design-domain, where fielded software is far less accessible
and the software is  known only from its initial requirements.
Any modifications in the design-domain will therefore typically
require a rebuild, incurring the associated cost to modify. Thus,
the  “high  costs  of  change,  understood  by  all”  will  apply  to

fielded systems to “dampen the whim of the changers” (Brooks
Jr. 1987).

Invisibility
Brooks Jr. argues that software is invisible and unvisualisable
and  thus  geometric  abstractions,  while  powerful,  are  largely
unavailable.  Fortunately,  in  the  design-domain,  the  scope  of
concern has  been considerably narrowed.  Thus, there is  little
need  to  understand  the  whole  to  the  same  detail  as  before.
Rather,  the  system relies  upon a vendor  delivering a design-
contribution  without  any  need  for  global  contextualisation.
Specialisation  therefore  provides  ample  opportunity  to  use
geometric abstractions in the quest for improvements to vendor
processes,  operating  as  they  do  at  a  local  level,  where  the
problem-space is small and manageable.

Accidents
Accidental  difficulties  arise  during  the  representation  of  the
conceptual construct of a software system, whereas the essence
of  software  lies  within  the  conceptual  construct  itself.  An
industrialised system will of course give rise to new accidental
difficulties  including  constructability,  accountability,  change-
management  and  competition.  These  accidental  difficulties
provide  new market  opportunities  as  the  industry continually
strives  for  order-of-magnitude  improvements  in  productivity,
reliability and simplicity. 

Constructability
Code-domain methods of software development have enjoyed a
smooth  requirements  specification  space.  One  of  the  few
benefits  of  the  code-domain  is  that,  given  enough  time  and
resources, a developer is able to fashion software to satisfy any
reasonable requirement. However, the design-domain requires a
more  disciplined  and  restrictive  approach  to  requirements
specification, one that is limited to what ‘parts’ are available.
When a  situation  arises  in  which  a  requirement  is  outside  a
degree-of-freedom  advertised  by  any  available  supplier,  the
choice presented is one of either compromising on the design
(in order to remain within the degree-of-freedom) or bringing a
new  ‘part’  into  existence  (by  creating  a  new  supplier  or
incentivising an  existing supplier  to  expand their  degrees-of-
freedom). 

We propose that the requirements specification space
now  be  confined  by  industry-supported  degrees-of-
freedom.

In the design-domain, we can no longer build any application or
satisfy  any  requirement  for  which  the  industry  is  currently
deficient  in  supporting.  Fortunately,  the  law  of  supply  and
demand ensures that deficiencies are merely viewed as market
opportunities  whose  growth  will  inevitably  attract  the
enterprising engineer.

Accountability
With the de-emphasis  on code structure and readability, how
then are we to find and fix ‘bugs’? In the design-domain, there
are no ‘bugs’, only requirements non-conformance.  In contrast
with  the  code-domain,  where  defects  are  sought  on  a global
level  and with complete visibility, in the design-domain, non-
conformance  is  identified  at  a  local level by  the  relevant
specialist  engineer.  When  a  software  program  fails  its
acceptance  testing,  the  principal  engineer  simply  identifies
which requirement is not satisfied, and therefore which supplier
broke  their  contract,  a  feat  that  is  only  possible  now  that
requirements  are  discretised  by  degrees-of-freedom.  When



8

notified  of  their  non-conformance  (and  the  behaviour  that
caused the fault in particular), this supplier then examines their
own design (and job history) to determine whether the fault is
due to their internal knowledge, or due to a faulty supplier of
their  own.  If  it  is  the  latter,  the  process  of  recursive  non-
conformance notification continues. 

An accidental  difficulty  of  strong accountability  arises
from the design domain. 

An astute engineer will realise that, while their vendor inherits
the powerful design capabilities of its suppliers, it also inherits
their reputation. When a vendor’s reputation is directly tied to
the reputation of its suppliers, the astute engineer will naturally
choose these suppliers wisely.

Change-management
As a consequence of operating in the design-domain, code is
now structured for performance rather than maintainability. As
such, the change-management process now consists of the far
more readable and appropriate maintenance-of-requirements. In
the  code-domain,  adding  a  feature  during  late stages  of  the
design  has  always  proven  problematic,  as  the  code-base  is
typically not provisioned to incorporate the feature.  Further, in
the  interests  of  cost  control,  any  new feature  is  likely  to  be
added in an improvised manner rather  than risk an extensive
redesign to properly integrate the feature. “History shows that
very few late-stage additions are required before the code base
transforms from the familiar to a veritable monster of missed
schedules,  blown  budgets  and  flawed  products”  (Brooks  Jr.
1987). 

By contrast, engineers in the design-domain, can summarily add
new requirements (as  long as  they stay within the bounds of
industry-supported degrees-of-freedom) which, with rebuilding,
seamlessly incorporates the new features. Any number of late-
stage additions can be added in this way with little risk of the
project becoming unmanageable.

Competition
With  intellectual  property  protection,  a  vendor  is  denied
visibility of a competitor’s process. 

An accidental difficulty quite new to software arises in
the design-domain – competition. 

A prospective competitor, while  entitled to field a competing
vendor, must therefore develop their own intellectual property.
Where there is competition, the better method tends to win-out,
rewarding  innovation  and  forcing  improvements  in  order  to
retain or regain market-share. Because of the fractal-like nature
of the supply-chain, where ‘parts’ are made up of ‘sub-parts’,
vendor  competition  at  a  ‘part’-level  is  driven  by  supplier
competition acting at a ‘sub-part’-level and so on. 

The size of the competing pool also has significant bearing on
the intensity of competition within the pool. With the advent of
technologies such as the Internet,  with its cross-border reach,
and  Bitcoin,  which  provides  border-less  and  instant  wealth
transfer,  a  global  competing  pool becomes  practical.  With
careful design of the industrialised system, competition can be
focused  on  key  pressure  points  of  software  development.  If
vendor performance metrics such as speed, cost, performance,
resource usage and rate of non-conformance are advertised to
prospective clients, then competition will inevitably be driven
by those metrics. 

The  variance  in  vendor  performance  is  transparent  in  the
design-domain  and  is  to  be  celebrated  –  after  all,  without

excessive cost, non-conformances, waste, and the like, there is
little for competition to effect. It must be accepted that a supply-
chain will not contain vendors uniform in calibre, and that there
will be varying degrees of quality in a given project. (It would
be arrogant  to  assume that  every  part  of  an auto-mobile has
been designed to the same standard.)

Competition delivers a software supply-chain with a fast
path for improvement.

An  industrialised system takes software that is largely immune
to  competitive  pressure  and  creates  perhaps  the  most
competitive environment  ever devised. This acute competition
arises  for  two  reasons,  both  almost  unique  to  software;
software’s intangibility and the global reach of the Internet. The
irony it appears, is that despite being bypassed by the industrial
revolution  for  so  long,  software  is  uniquely  suited  to  an
industrialised system.

Emerging Software Industry
McIlroy’s  industrialisation,  with  its  magnificent  ability  to
manage complexity, is precisely the disruptive innovation that
the software industry has long sought. To consider the proposed
method  the  turning  point  for  the  emergence  of  a  software
industry, it appears prudent to examine its compliance with the
agents of industrialisation; reductionism and mass-production,
through the principles of standardisation and interchangeability. 

Reductionism
In order for a system as complex as a software supply-chain to
emerge,  conditions  such  as  viability  and  scaling  of  its
constituent parts must be satisfied.

We note that scaling components using code-domain methods
poses  substantial  design  challenges.  Logically,  the  larger  the
component, the more it must interact with its host application.
When designing an easy-to-use interface,  the developer finds
the magnitude of the required interaction often works against
interface simplicity.  Furthermore, the client must contend with
an ever larger and therefore more complex interface, and must
design  proportionally  more  glue  logic  for  proper  component
operation. Thus, code-domain scaling issues limit the size and
practical value of any software supply-chain. We also contend
that it is virtually impossible to build a viable business around
code-domain methods due to intellectual property leakage. With
the challenges of component scaling limiting a supply-chain’s
practical value and the inability to specialise limiting a supply-
chain’s  economic value, any application of reductionism is not
only correspondingly limited, it  is  functionally inhibited.  The
design-domain is not limited by any such scaling or economic
viability  issues.  Vendors  are  free  to  fashion  arbitrarily  sized
fragments  through  the  use  of  sub-contracting,  effectively
inheriting a good portion of design and integration effort from
these suppliers. Additionally, by removing component interfaces
and instead  allowing seamless  integration of  fragments,  their
effective interface can easily scale with the size of the fragment.
The principle of reductionism is clearly satisfied, as scaling of
the software  entity  now becomes  “merely  a repetition of  the
same elements in larger size” (Brooks Jr. 1987). 

Mass-production
In a client-supplier relationship, it is the supplier who has innate
knowledge  of  the  possible  scope  of  requirements  that  exist
within  their  specialist  purview,  rather  than  client.  Yet
surprisingly, in the code-domain, it is the client who is primarily



9

responsible  for  dictating  these  requirements.  In  the  design-
domain, the responsibility is now shifted to the supplier, thereby
ensuring requirements are captured by the expert. This notion is
taken  to  the  extreme,  a  point  at  which  all  ambiguity  can  be
eliminated, by introducing quantised degrees-of-freedom. Now,
whenever a vendor is contracted, its client is presented with a
finite suite of degrees-of-freedom, each of which the client must
satisfy in order to enjoy the commissioned design-contribution.
This concept of quantised degrees-of-freedom not only makes
the process of requirements-capturing a deterministic one, but
more importantly, it opens up the opportunity for automation. If
each  vendor  in  the  supply-chain  advertises  their  degrees-of-
freedom in advance, an engineer may now effect automation in
all of their vendor’s operations, as committee appointments and
negotiations  can  be  driven  by  internal  knowledge  (also
automated). 

It  is  indeed  fortunate  that  the  design-domain  affords
unprecedented automation opportunities for the simple reason
that each fragment is to be synthesised for the client on-the-fly.
In fact, when the design of a single software program alone can
require  (in  total)  many  millions  of  contracts,  it  is  almost
impossible to consider this peer-to-peer technology without the
prospect of automation.

Standardisation
The proposed software engineering system is a service-oriented
one, where each vendor makes a design-contribution. Design-
contributions  in  the  order  of  millions  can  be  expected  for  a
single design project. Without some standard outlining vendor
interactions,  the  cumulative  collaboration  required  for  just  a
single project would be prohibitively time- and cost-intensive.
As each vendor’s degrees-of-freedom are advertised in a shared
directory,  the  logical  application  of  standardisation  would
dictate that these degrees-of-freedom adhere to a formalised set
of standards. 

When  contracted,  each  degree-of-freedom  presented  by  a
vendor  to  the  client  will  be  in  the  form of  a  representative
awaiting appointment to a relevant committee. Once appointed,
these  representatives  are  free  to  compatibly  arrive  at  an
agreement beneficial to all representatives, the terms of which
may result  in  further  representatives  awaiting appointment  to
sub-committees. By formalising committee and sub-committee
types, this engineering system can operate within a framework
of  automated  services  where  each  contribution  is  seamlessly
integrated without intervention during a live project.

Interchangeability
The offered software engineering system, while not enforcing
interchangeability,  nevertheless  expects  the  application  of
interchangeability  to  emerge  due  to  market  pressures.  As  in
standardisation, an easy way to reduce the client’s burden in
switching to a new supplier is  for the supplier  to make their
product interchangeable. This is achieved by adopting the same
requirements degrees-of-freedom as the competitor. 

What will quickly emerge are pre-defined suites of degrees-of-
freedom. These suites can be advertised under classifications in
the  directory,  along  with  a  comprehensive  list  of  compliant
vendors. As each vendor is automated to present these degrees-
of-freedom  when  contracted,  an  engineer  can  direct  (in
advance)  their  own  vendor  to  deal  with  the  suite  not  the
supplier. After  the vendor has  been built  and is active in the
supply-chain, the engineer may substitute a supplier for another

from  the  suite  list.  An  engineer  may  wish  to  interchange
suppliers in this manner in order to take advantage of the natural
reductions  in  cost  and  increase  in  quality  that  inevitably
emerges from a competitive system. 

Each  vendor  that  exists  in  the  supply-chain  represents  a
valuable piece of expert knowledge that has been captured and
distilled into a  single design proxy, a  vendor. This vendor is
capable of seamlessly interlocking with other vendors to design
and  construct  a  highly  complex  and  completely  customised
software program. Through the introduction of standardisation
and interchangeability, complete automation can be applied to a
vendor’s contribution, instantly elevating the design-domain to
a status only seen upon maturation of industrialisation – mass-
customisation. 

In  contrast  with preceding industries,  whose  agility  in  mass-
production  was  hard-earned  through  evolved  maturity,  the
software industry can  begin its industrial revolution with near
perfect  agility,  as  every  ‘component’  is  mass-produced  yet
custom-designed. 

Conclusion
The  software industry  is  not  industrialised.  Not  surprisingly,
industrialisation has been touted as the solution to the software
crisis.  Proposed  is  an  innovation  for  protecting  intellectual
property, the lack of which has robbed industrialisation of its
most  vital  basis  –  specialisation.  Thus,  a  revolution  may  be
upon us –  a software industrial revolution –  mobilised by the
intangibility of  software and fuelled by its  software factories
synthesising its software factories.  With this revolution, a new
breed  of  engineer  can  join  the  ranks  of  other  legitimate
engineering disciplines, ply their skills, and peer with a globally
connected  supply-chain,  founding their  own Silicon Valley, a
virtual valley, a Code Valley.

Acknowledgements

For my wife Bernadette Lovisa. 

References
Brooks,  Jr.,  F.P. (1987).  “No silver  bullet:  essence and accidents  of

software engineering,” IEEE Computer, 20(4), pp. 10-19.
Gibbs, W.W. (1994). “Software’s Chronic Crisis.” Scientific American,

September 1994, pp. 86-95.
McCloskey, D. (2004). Review of  The Cambridge Economic History

of Modern Britain,  edited by Roderick Floud and Paul Johnson,
Cambridge University Press. 

McIlroy, D. (1968). “Mass-produced software components,”  Software
Engineering: Report of a conference sponsored by NATO Science
Committee,  Garmisch,  Germany,  7-11  Oct.,  Scientific  Affairs
Division, NATO, p. 79.

Schach,  S.  (2008).  Object-oriented  Software Engineering,  McGraw-
Hill Higher Education, New York.


